Monolithic Active Pixel Sensors (MAPS) in a Quadruple Well Technology for Nearly 100% Fill Factor and Full CMOS Pixels
نویسندگان
چکیده
In this paper we present a novel, quadruple well process developed in a modern 0.18 mm CMOS technology called INMAPS. On top of the standard process, we have added a deep P implant that can be used to form a deep P-well and provide screening of N-wells from the P-doped epitaxial layer. This prevents the collection of radiation-induced charge by unrelated N-wells, typically ones where PMOS transistors are integrated. The design of a sensor specifically tailored to a particle physics experiment is presented, where each 50 mm pixel has over 150 PMOS and NMOS transistors. The sensor has been fabricated in the INMAPS process and first experimental evidence of the effectiveness of this process on charge collection is presented, showing a significant improvement in efficiency.
منابع مشابه
Radiation Tolerance of CMOS Monolithic Active Pixel Sensors with Self-Biased Pixels
CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad.
متن کاملCMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors
This paper reviews the development of CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors. MAPS are developed in a standard CMOS technology. In the imaging field, where the technology found its first applications, they are also known as CMOS Image Sensors. The use of MAPS as a detector for particle physics was first proposed at the end of 1999. Since then, their good perform...
متن کاملR&D on MAPS Pixel Detectors for Linear Collider Applications
CMOS-MAPS (Monolithic Active Pixel Sensors) are one possible technology which may fulfill the stringent requirements of a precision vertex detector at a future e + e − Linear Collider. Progress on the work on physics simulation, layout optimization, design of the mechanical structure and cooling, sensor simulation, radiation hardness, as well as results from measurements of sensors of 3.5 cm 2 ...
متن کاملElectrical μ-Lens Synthesis Using Dual-Junction Single-Photon Avalanche Diode
This work presents a dual-junction, single-photon avalanche diode (SPAD) with electrical μ-lens designed and simulated in 90 nm standard complementary metal oxide semiconductor (CMOS) technology. The evaluated structure can collect the photons impinging beneath the pixel guard ring, as well as the pixel active area. The fill factor of the SPAD increases from 12.5% to 42% in comparison with simi...
متن کاملBack-Illuminated three-dimensionally integrated CMOS image sensors for scientific applications
SOI-based active pixel image sensors have been built in both monolithic and vertically interconnected pixel technologies. The latter easily supports the inclusion of more complex pixel circuitry without compromising pixel fill factor. A wafer-scale back-illumination process is used to achieve 100% fill factor photodiodes. Results from 256 x 256 and 1024 x 1024 pixel arrays are presented, with d...
متن کامل